Using Artificial Physicsto Control Agents

William M. SpearsaandDianaF. Gordon
Al CenteyNaval Researct.aboratory
WashingtonD.C. 20375
spears@aic.nrl.wg. mil

Abstract

We introduce a novel framevork called “artificial
physics”,which providesdistributedcontrol of large collec-
tionsof agents.Theagentsreactto artificial forcesthatare
motivatedby natural physicallaws. This framewvork pro-
videsan effectivemedanismfor achieving self-assembly
fault-tolerance and self-repair  Examplesare shownfor
various regular geometric configumations of agents. A
further exampledemonstates that self-assemblyia dis-
tributedcontmol canalso performdistributedcomputation.

1. Intr oduction

Theobjective of thisresearclis thedistributedcontrolof
agentghatrangein scalefrom neuronspanobotspr micro-
electromechanicaystems(MEMS) to micro-air vehicles
(MAVs) and satellitese.g., see[4]. Agentscanbe physi-
cal or virtual (e.g.,softbots),mobile or immobile. Agents
generallyhave sensorsand effectors. An agents sensors
perceve the world (including otheragentsyandan agents
effectorsmake changego thatagentor the world (includ-
ing otheragents).Often, agentscanonly senseandaffect
nearbyagents;thusthe problemis usually one of “local”
control. Sometimescontrolis alsoguidedby global con-
straintsandinteractions.

Of course,one of the biggestproblemsis that we of-
tendon't know how to createthe propercontrolrules. Not
only dowewantthedesiredylobalbehaior to emegefrom
thelocal interactionbetweenagentg(i.e., self-assemblyr
self-olganization) but we alsowould lik e thereto be some
measuref fault-tolerancé.e.,theglobalbehaior degrades
verygraduallyif individualagentsaredamagedSelf-repair
is alsodesirablewherea damagedystenrepairsitself.

Self-assemblyfault-tolerance and self-repairare pre-
ciselythoseprinciplesexhibited by naturalsystems.Thus,
mary answerso theproblemsof distributedcontrolmaylie
in the examinationof the naturallaws of physics.

A recentresearchhrustthatis basedon naturalphysics
suggestgven morestronglythe closeconnectiornbetween
physics and distributed control. This exciting research
thrustis the developmentof alternatve distributed forms
of computingbasedon nature,suchas quantumcomput-
ing, molecularcomputing,and computingwith DNA e.g.,
see [1, 5]. Suchcomputingenginesare a direct resultof
the naturallaws of physics.In the naturalworld small en-
tities (Qquantumbits, moleculesgetc.) exert forceson other
entitiesandrespondo forcesfrom otherentities.Generally
the only forcesthat matterare thosefrom nearbyentities,
thusthe computatioris performedvia so-called‘local” in-
teractions.However, sometimeghe computationsare also
guidedby globalconstraintandinteractions.

Clearlythefields of naturaldistributedcomputatiorand
distributedcontrolarerelated.Both fieldsinvolve the study
of largenumbersof entities(or agentslindegoingchanges
(or performingchangesylueto globalconstraintsandlocal
interactionsfrom nearbyentities. The main differenceis
in the forcesthat controlthe entities. The forcesin natural
distributedcomputingaretied directlyto physicallaws. The
forcesin distributedcontrolstemfrom man-madeules.

This papermproposes generaframeawvork for distributed
control in which “artificial physics” (AP) forces control
agentsWe usetheterm“artificial” becausalthoughwe are
motivatedby naturalphysicalforces,we are not restricted
to only naturalphysicalforces. Clearly, the agentsarent
really subjectto realforces,but they canact asif theforces
arereal. Thustheagents sensorsnustseeenoughto allow
it to computetheforcesto whichit is reacting.Theagents
effectorsmustallow it to respondo this percevedforce.

We seeseveral potential advantagego this approach.
First, in the real physicalworld, collectionsof small enti-
tiesyield surprisinglycomplex behaior from very simple
interactionsbetweenrthe entities. Thusthereis a precedent
for believing thatcomplec control canbe achiezedthrough
simplelocal interactions. This is requiredfor very small
agents(suchas neuronsor nanobots)sincetheir sensors
andeffectorswill necessarilype primitive. Two, sincethe
approachs largely independenof the sizeand numberof
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agents,the resultsshould scalewell to larger agentsand
larger setsof agents.Finally, we believe thatthis approach
will tightenthe connectionbetweencontrol and computa-
tion, potentiallyyielding new insightsinto computationor

yielding new computationahlgorithms.

2. Framework

The motivation for this work stemsfrom a desirefor
swarmsof micro-airvehicles(MAVs) to form variousreg-
ular geometricconfigurations- thuswe will focuson mo-
bile physicalagents Ourapproactireatsagentsasphysical
particles which couldrangein sizefrom nanobotgo satel-
lites. A simplebut realisticphysicalsimulationof the par
ticles’ behavior washbuilt. Particlesexist in two dimensions
(we seelittle difficulty in generalizingo threedimensions)
andareconsideredo be point-massesEachparticlei has
positionp = (z,y) andvelocityv = (v;,v,). We usea
discrete-timeapproximationto the continuoushehaior of
the particles,with time-stepAt. At eachtime step,the po-
sition of eachparticleundegoesa perturbationAp. The
perturbationdependson the currentvelocity Ap = vAt.
Thevelocity of eachparticleat eachtime stepalsochanges
by Av. The changein velocity is controlledby the force
ontheparticleAv = FAt/m, wherem is themassof that
particleandF" is theforceonthatparticle.A frictional force
isincluded for self-stabilization.

For MAVSs, the initial conditionsare similar to those
of a “big bang” — the MAVs are assumedo be released
from acanisterdroppedrom a plane thenthey spreacbut-
wardsuntil a desiredgeometricconfigurationis obtained.
This is simulatedby using a two dimensionalGaussian
randomvariableto initialize the positionsof all particles
(MAVS). Velocitiesof all particlesareinitialized to be 0.0,
and massesare all 1.0 (althoughthe frameavork doesnot
requirethis). An exampleinitial configurationfor 200 par
ticlesis shawvnin Figurel.

Figure 1. The initial univer se at t = 0.

Giventheinitial conditionsandsomedesiredglobalbe-
havior, then, we must definewhat sensorsgffectors,and
force F' laws are requiredsuchthat the desiredbehaior
emeges. We explorethis in the next few sectionsfor dif-
ferentgeometricconfigurations.

3. Creating HexagonalLattices

Theexampleconsideredhereis thatof aswarmof MAVs
whosemissionis to form a hexagonallattice, which cre-

atesaneffective sensinggrid. Essentiallysuchalatticewill

createa virtual antennaor syntheticapertureradarto im-
prove the resolutionof radarimages. A virtual antennas
expectedto be an importantfuture applicationof MAVS.
Currently thetechnologyfor MAV swarms(andswarmsof
othermicro-vehiclessuchasmicro-satellites)s in the early
researctstage.Neverthelessve are developingthe control
softwarenow sothatwe will be prepared.

Since MAVs (or other small agentssuchas nanobots)
have simple sensorsand primitive CPUs,our goal wasto
providethesimplestpossiblecontrolrulesthatrequiremin-
imal sensoraindeffectors.At first blush,creatinghexagons
would appearto be somevhat complicated requiringsen-
sorsthatcancalculaterange the numberof neighborstheir
angles,etc. However, it turns out that only rangeinfor-
mationis required. To understandhis, recallan old high-
schoolgeometrylessonin which six circlesof radiusR can
bedravn ontheperimeteiof acentralcircle of radiusR (the
factthatthis canbe donewith only acompassndstraight-
edgecanbe provenwith Galoistheory).Figure?2 illustrates
this construction.If the particles(shovn assmall circular
spots)aredepositedat the intersection®f the circles,they
form ahexagon.

Figure 2. How circles can create hexagons.

The constructiorindicatesthathexagonscanbe created
via overlappingcirclesof radiusR. To mapthisinto aforce
law, imaginethateachparticlerepelsotherparticlesthatare
closerthan R, while attractingparticlesthatarefurtherthan
R in distance Thuseachparticlecanbeconsideredo have
acircular“potentialwell” arounditself atradiusR — neigh-
boring particleswill wantto be at distanceR from each
other Theintersectiorof thesepotentialwells is a form of
constructve interferencethat creates'nodes” of very low
potentialenegy wherethe particleswill belikely to reside
(againthesearethe smallcircularspotsin the previousfig-
ure). Thusthe particlessene to createthe very potential
enepgy surfacethey arerespondingo!*

With this in mind we defined a force law FF =
Gm;m;/r*, whereF is themagnitudeof theforcebetween
two particles; andj, andr is therangebetweerthetwo par
ticles. The“gravitationalconstant'G is setatinitialization.
Theforceisrepulsieif r < R andattractveif » > R. Each

1The entirepotentialenegy surfaceis never actuallycomputed Parti-
clesonly computeocal force vectorsfor their currentlocation.



particlehasonesensoithat candetectthe rangeto nearby
particles. The only effectoris to be ableto move with ve-
locity v. To ensurethatthe force laws arelocal in nature,
particleshave a visualrangeof only 1.5R.?

The initial universeof 200 particles(as shovn in Fig-
urel) is now allowedto evolve for 1000time steps,using
this very simpleforcelaw (seeFigure3). For aradiusR of
50we have foundthata gravitationalconstanof G = 1200
providesgoodresults(thesevaluesremainfixedthroughout
this paperunlessstatedotherwise).
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Figure 3. A good hexagonal lattice (¢ = 1000).

Thereare a numberof importantobsenationsto make
aboutFigure 3. First, it is obviousthata reasonablywell-
definedhexagonalattice hasbeenformedfrom theinterac-
tion of simplelocal force laws thatinvolve only the detec-
tion of distanceto nearbyneighbors.The hexagonallattice
is not perfect— thereis a flaw nearthe centerof the struc-
ture. Also, the perimeteris not a hexagon,althoughthis is
not surprising,given the lack of global constraints.How-
ever, mary hexagonsareclearly embeddedn the structure
andtheoverall structurds quite hexagonal.Theseconcdb-
senationis thateachnodein the structurecanhave multi-
ple particles(i.e., multiple particlescan“cluster” together).
Clusteringwas an emegent propertythat we had not ex-
pected,andit providesincreasedobust behaior, because
the disappearancéailure) of individual particles(agents)
from a clusterwill have minimal effect. This form of fault-
tolerances aresultof the settingof GG, which we explore
laterin this section.

Thepatternof particlesshovnin Figure3 is quitestable,
anddoesnotchangdo ary significantdegreeast increases
past1000. Thedynamicsof the evolving system(from 0 <
t < 1000) is quitefascinatingwhenwatchednacomputer
screen)yetis hardto simply corvey in apaper As opposed
to displayingnumeroussnapshotsve have insteaddecided
to graphcertainwell-definedcharacteristic®f the system
thatcanbemeasuredtary time step.Thesecharacteristics
yield usefulinsightsinto the systemdynamics.

Thefirst characteristiove examinedis motivatedby our

2The constantl.5 is not choserrandomly In a hexagon,if a nearby
neighboris furtherthan R away, it is > +/3R avay. We wantedthe force
laws to beaslocal aspossible.
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Figure 5. The size of cluster s as t increases.

desireto have the global structurecontainasfew errorsas
possible,in the sensethat the orientationof the hexagonal
lattice shouldbe the sameeverywherethroughoutthe lat-
tice. To seehow we canachieve a measureof this char
acteristic,considerchoosingary pair of particlesseparated
by 2R. Thisformsaline sggment. Thenchooseary other
pair of particlesalsoseparatedyy 2 R, forming anothedine
segment.Measurgheanglebetweerthetwo line sggments.
For a hexagonallattice, this angleshouldbe closeto some
multiple of 60°. Theerror istheabsolutevalueof thediffer-
encebetweerthe angleandthe closesimultiple of 60. The
maximumerroris 30° andtheminimumis 0°. We averaged
thisoverall distinctpairsof particlepairs,anddisplayedhe
averageerrorfor every tentime steps(seeFigure4) 3
Sinceerrorrangesfrom 0° to 30°, we expectthe aver
ageerroratthe beginningto bearoundl5°. After thatthe
error shoulddecrease- the rate at which the decreasec-
cursis areasonableneasureof how quickly the systemis
stabilizing. Error decreasesmoothlyuntil aboutt = 200,
resultingin afinal errorof roughly6° overthewholestruc-
ture. Thisis atypical result. Averagedver 40 independent
runs(differentstartingconditions)thefinal errorwas5.6°.
The secondcharacteristiove examinedis the size of

3We use2R insteadof R in anattemptto smoothoutlocalnoise since
we careaboutglobalerror A particleis consideredo beseparatethy 2R
if 1.98R < r < 2.02R.
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Figure 6. Cluster size drops suddenly as G is
decreased linearl y after ¢ = 1000.

clusters.For eachparticle: we countedthe numberof par

ticlesthatwerecloseto i (0 < r < 0.2R). We always
includetheparticlei itself, sotheminimumsizeof acluster
is 1.0. This wasaveragedover all particlesand displayed
for every time step. Resultsare shavn in Figure5. At

t = 0 all particlesarevery closeto one anotheryielding

a high clustering. Immediately the particlesfly apart,due
to the repulsie force, so thatby ¢ = 6 the particlesare
all effectively separatedHowever, aftert = 6 clustersre-

emege,with thefinal clustersizebeingaround?2.5. Clearly
the re-emegenceof clusterssenesto lower the total po-

tentialenepy of the systemandthesizeof there-emeged
clustersdepend®nfactorssuchasG, R, andthegeometry
of the system.A full understandingf this phenomenotis

beyondthe scopeof this paper yetwe summarizénereone
interestingexperimentwith G. We continuedthe previous
experiment,evolving the systemuntil ¢ = 2500. However,

aftert = 1000 we loweredG by 0.5 for every time step.
Theresultsareshavn in Figure®.

We expectedheaverageclustersizeto linearly decrease
with G, but in factthe behaior was much more interest-
ing. Theaverageclustersizeremainedjuite constantpuntil
aboutt = 2000, whichis whereG is 700. At this pointthe
clustersize dramaticallydroppeduntil roughly ¢t = 2200
(whereG = 600), wherethe particlesareseparate@gain.
This appearsvery similar to a phasetransitionin natural
physicsdemonstratinghatAP canyield behaior very sim-
ilar to thatdemonstrateth naturalphysics.

4. Creating Square Lattices

Giventhesucces creatinghexagonalattices,wewere
inspiredto investigatetherregularstructuresNaturallythe
squardatticeis anobviouschoice since(aswith hexagons)
squarewill tile a 2D plane. The succes®f the hexagonal
lattice hingeduponthefactthatnearesteighborsare R in
distance. Clearly this is not true for squaressinceif the
distancebetweerparticlesalonganedgeis R, thedistance

alongthe diagonalis v/2R. The problemis that the parti-
cleshave no way of knowing whethertheir relationshipto
neighborgs alonganedgeor alonga diagonal.
Onceagainit would appeaiasif we would needto know
anglesor the numberof neighborsto solwe this difficulty.
In fact, a much simplerapproachwill do the trick. Sup-
posethatat creationeachparticleis givenanothenattribute,
called“spin”. Half of the particlesareinitialized to be spin
“up”, while the otherhalf areinitialized to be spin“down”.
Spinsdo not changeduringthe evolution of the systent!

(] O

O L]

Figure 7. Forming a square using two spins.

Considerthe squaredepictedin Figure7. Particlesthat
are spin up are opencircles, while particlesthat are spin
down arefilled circles.Notethatparticlesof unlike spinare
distanceR from eachother while particlesof like spinare
distance//2R from eachother This“coloring” of theparti-
clesextendsto squardattices,with alternatingspinsalong
theedgeof squaresandsamespinsalongthediagonals.

Theconstructiorin Figure? indicateghatsquardattices
canbecreatedf particlescansensaotonly rangeto neigh-
bors,but alsothe spinsof their neighbors Thusthe sensors
needto be ableto detectonemorebit of information,spin.
We usethe sameforcelaw asbefore: F = Gmimj/r"’. In
this case however, the ranger is renormalizedo ber/+/2
if thetwo particleshave the samespin. Thenonceagainthe
forceisrepulsveif r < R andattractveif » > R. Theonly
effectoris to beableto movewith velocityv. To ensurdhat
theforcelaws arelocalin nature particlescannotevensee
or respondo otherparticlesthatarefurtherthan1.7R.>

Theinitial universeof 200patrticlesis allowedto evolve
for 4000time steps(the systemis somavhatslower to sta-
bilize thanthe hexagon),usingthis very simpleforce law.
The final resultis shavn in Figure8. Again, we measure
the angularerror by choosingpairs of particle pairs sepa-
ratedby 2R (and by insistingthat eachparticle pair have
like spins,we help ensurethat pairs are alignedwith the
rows andcolumnsof the lattice). In this casethe anglebe-
tweenthetwo line sggmentsshouldbe closeto somemulti-
ple of 90°. Theerroris theabsolutevalueof thedifference
betweerthe angleandthe closesimultiple of 90. Themax-
imum erroris 45° while the minimumis 0°. The graphof
angularerroris shovnin Figure9.

The resultsare clearly suboptimal. Locally, the parti-
cles have formed decentsquarelattices. This canbe ob-
sened by noting that the spinsalternatealong the edges

4Spinis merelyaparticlelabelandhasnorelationto therotationalspin
usedin navigationtemplateg11].
5Theconstanis 1.7if particleshave like spinand1.3otherwise.
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Figure 8. The 200 particles form a square lat-
tice by ¢ = 4000, but global flaws exist.
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Figure 9. Angular error as t increases.

of squareswhile spinsarethe samealongthe diagonalof
squares. Onceagaineach“node” in the lattice can have
multiple particles providing for increasedobustbehaior.®
However, large globalflaws split the structureinto separate
squarelattices. This is alsoindicatedby Figure 9, which
shaws thatthe systemis unableto achieve an error of less
thanaboutl0°. Again,thisresultis fairly typical. Averaged
over 40 independentuns, the final errorwasabout12.8°.
Thus,althoughthelocal force laws do appeaitto work rea-
sonablywell, they (not surprisingly)do not rule out diffi-
cultiesat the global level. The questionis whetherthese
sortsof difficulties mustbe repairedvia global constraints
or whethemnwe cangetby with local repairs.

5. Local Repair of Square Lattices

As with other physical systems the presenceof some
form of noiseoften helpsto remove global flaws in struc-
tures. Furthermore we would also like systemsto self-
repaireven at the local level. For example,if all particles
ataparticularnodearedestryed,alocal hole opensin the
hexagonalor squardattice. Our goalis to provide a simple
repairmechanisnthatrepairsbothlocal andglobalfaults.

8In this casethefinal clustersizeis roughly 1.75.

To achieve this goalwe focusedagainon the conceptof
spin. If oneexaminesFigure8 onenoticesthatclustersare
almostalwaysmadeup of particlesof like spin. Thereis an
aversionto having clustersof unlike spins(thiswasanother
surprisingemegentproperty).

Now recallthatspinsaresetat initialization andarenot
allowedto change Whatwould happenthough,if onepar
ticle in a clusterof like spinschangespin? It would prob-
ably fly away from that clusterto anotherclusterwith the
samespin asit now has. It could alsoland at an empty
node, which althoughempty is still an areaof very low
potentialenegy. In essencelustersrepresentreaswith
excesscapacity(i.e., morethana sufficient numberof par
ticles),andthatexcesscapacitycanbe usedto fix problems
in the structureasthey arise. Thusour hypothesids that
thisincreasedlow of particles(noise)canhelprepairboth
local andglobalflaws in the squardattice.

To testthis hypothesisonly requiredone changeto the
code.Againparticlesareinitializedwith agivenspin. How-
ever, if a particle hasa neighborthat is extremely close
(r < 1.0), theparticlemayflip its spinwith a small prob-
ability. Thusthe particlesnow have oneadditionaleffector
— they canchangetheir own spin. This shouldnot create
structuralholes,sincea particlecanonly leave a clusterif
thereis excesscapacity(atleastoneneighborin thecluster).

Onceagaintheinitial universeof 200 particlesevolved
usingthesameorcelaw for thesquardattice,coupledwith
this simple spin-flip repairmechanism.The initial condi-
tions werethe sameasthosein the previous section. The
resultsareshavn after4000time steps(seeFigures10and
11) andarequiteimpressive. The previously shavn global
flaws areno longerin evidence(althougha minor portion
of thelatticeis still misaligned).Many of theflaws thatre-
mainarelocal andarea resultof a still operatingspin-flip
repairmechanismthat continuesto occasionallyflip spins
(sendingparticlesfrom clusterto cluster). Obsenation of
the evolving systemshaws that holesarecontinuallyfilled,
as particlesleave their clusterand headtowardsthe open
areaf low potentialenegy.

Notealsothatspin-flip repairhasthe effect of creatinga
larger squardattice pattern. This occursbecausespin-flip
repairwill continually operateuntil eachclustercontains
only one particle. Note alsothat, as expected,Figure 11
shaws increasedoise,which is provided by the spin-flip
repait Thenoiseallows a betterglobalstructureto emege
(thefinal erroris 3.5°).

To testour hypothesighat spin-flip repairsenesto re-
move flaws from the evolved structure we ran our system
on the same40 independenproblemsthat were usedwith
no spin-flip repair Usingan exactWilcoxon rank-sumtest
we have determinedhatthemeanerrorwith spin-fliprepair
(4.9°) is statisticallysignificantlyless(p < 0.001) thanthe
meanerrorwithout spin-flip repair(12.8°).



Figure 10. The 200 particles form a better
square lattice at ¢ = 4000. Global flaws are
almost absent.
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Figure 11. Angular error as t increases.

In this sectionwe presenteda repair mechanismfor
globalandlocal flaws. Futurework will introducesensor
and effector noise,aswell asotherfaults. This will help
usidentify thelimitationsof our currentapproachsothatit
canbeimprovedasneededor greaterself-repairability.

6. Sorting

Onemotivationfor AP stemmedrom theconnectiorbe-
tweendistributed control and naturaldistributed computa-
tion. Thusfar we have shavn that the frameavork of AP
canbequiteusefulfor distributedcontrol. CanAP alsoper
form distributed computation?To explore this possibility
we consideredhetraditionalcomputationataskof sorting,
which movesdatafrom memorylocationto memoryloca-
tion, until the datais ordered.Supposéahateachparticlein
the AP framework represente@achdatum. Couldthe par
ticles physicallymove themselesso thatthey arealigned
in the correctorder?If so,we would have useddistributed
controlto performdistributedcomputation!

We decidedto investigatethe task of 2D sortingalong
asquardattice. Interestingly it turnsout thatthetaskcan

beachiezedusingtheabove AP framework for constructing
squardattices,with smallmodifications Recallthatwe re-
quiredthe additionof a“spin” attributefor eachparticle,in
orderto construcsquardattices.Every spinup (down) par
ticle is indistinguishabldrom every other spin up (down)
particle. However, for sorting every particle mustbe dis-
tinguishable. Thuswe addeda new 2D attribute (m,n) to
eachparticle,wherem andn areintegers.Eachparticlere-
cevesauniquepair (m,n). Thegoalis to sorttheparticles
accordingto m alongthe rows of the squardattice, while
sortingtheparticlesaccordingto n alongthecolumns.

(1,2)(2,2)

[ ] )

(1,1) (21)

Figure 12. Four sorted particles.

Figurel2 represents sortingof four particlesthathave
theattributes(1,1),(1,2),(2,1) and(2,2). The astutereader
will notethatthis sortingassumeanorientationto thesys-
tem (i.e., thatm shouldincreaseo theright, andn should
increasaupwards). The upshotis thatlocal informationis
not sufficient for this task. Onepieceof globalinformation
is required,orientation. Thus particlesmusthave sensors
for determiningrangeto otherparticles,their spin, (m, n)
attribute, and orientationin the world.” It is importantto
notethataparticle’s(m, n) attributedoesnotrepresena2D
coordinate rather it specifiedts orderingrelative to other
particles.Thusthe particlewith attribute (2,1) shouldbeto
theright of (1,1).

We now use the sameforce law as before: F =
Gm;m; [r?, whereagainthe ranger is renormalizedo be
r/+/2 if the two particleshave the samespin. Onceagain
the force is repulsve if » < R andattractve if » > R.
However, thereis now one further situationin which the
force shouldbe attractve, which is whentwo particlesare
notorderedproperlywith respecto theirm or n attributes.
Theideais thatin this situationthe two particlesshouldbe
drawn to eachothersothatthey passhy oneanother Thus,
thetwo particleswill “dance”aroundoneanotheruntil their
relative orderingis correct. Putanothemway, the force law
now simultaneouslgnforceshothatopologyandageome-
try to thesystem.The (m, n) attributedefineshetopology
while spinandrangedefinethegeometry

To testtheseideaswe chosea systemof 225 particles,
which were given the 225 attributesrangingfrom (1,1) to
(15,15). For this taskwe do not want clustering,sowe set
G = 600 (asshown in our earlierresults thisis sufficiently
low to avoid the clusteringeffect). Spin-flip repairis not
used. The systemof 225 particleswas randomlyinitial-
ized in the samefashionasin the earlierexperimentsand

7A microscopiccompassouldsenserientation.
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Figure 13. 225 particles form a perfect global
square, using sorting (¢ = 4000).

the systemwas allowed to run for 4000 time steps. Fig-
ure 13 showsthefinal configurationwhich is very impres-
sive. The225particleshave beerntopologicallysortedalong
therows andcolumnsof the squardattice. In fact,we have
succeededh creatinga perfectsquarewith the 225 parti-
cles! AP hasperformedwo taskssimultaneously-forming
asquardatticewhile sortingthe particlesthatform thatlat-
tice. The additionaltaskof sortingprovidesa mechanism
for achieving a globally perfectlattice (we confirmedthis
overtenindependentuns).

Sincewe were motivatedinitially by the formation of
hexagonalstructuresye wonderedwvhetherthe samesort-
ing mechanisncould be usedto createperfecthexagons.
It turnsout thatit canin fact be donequite simply, if the
(m,n) attributesaredefinedproperly ConsiderFigure 14,
which shaws the (m,n) attributesfor a simple hexagon
composedf seven particles. Onceagainm andn should
notbeconsideredo becoordinategin factit is obviousthat
if they werecoordinateghey would be incorrect). Rather
they indicatesimply therelative orderingof the particlesin
the2D plane.Thesettingof the (m, n) attributecanbeeas-
ily generalizedo hexagonswith moreparticles.

(_171) 71)

(
10,0

1
(-2,0)0 o )

. (2,0
(~1,-1) (1 -1)

Figure 14. Seven sorted particles.

To testtheseideaswe chosea systemof 217 particles
(whichis thenumberof particlesneededo createa perfect
hexagonwith nine particlesper side at the outer perime-
ter)andinitializedtheir (m, n) attributeaccordingly Again
G = 600 andthesystemof 217 particleswasrandomlyini-

Figure 15. 217 particles form a perfect global
hexagon, using sorting (t = 15000).

tialized. This systemwasslower to stabilizethanthesquare
lattice, andwasallowed to run for 15000time steps. Fig-

urel5shavsthefinal configurationwhichis againveryim-

pressie. The 217 particleshave beentopologicallysorted,
andhave succeedeth forming a perfecthexagon(againwe

confirmedthis overtenindependentuns).

7. Summary and RelatedWork

This paperhasintroduceda novel frameawork for dis-
tributed control, basedon laws of artificial physics(AP).
The motivation for this approachis that natural laws of
physicssatisfythe requirement®f distributedcontrol(i.e.,
self-assemblyfault-toleranceandself-repair).

The initial resultswith this framewvork have beenquite
promising. We illustrated how a simple AP framework
canresultin the self-assemblyf hexagonalandsquardat-
tices. Theconcepdf spin-flippingfrom naturalphysicswas
shavnto beusefulasarepairmechanisnfor squardattices,
if no globalinformationis available. We have also used
thesemechanismgo createother structurege.g., tiling a
2D surfacewith “open” hexagonsthat have no particlein
thecenter by usingparticlesof alternatingspin).

The paperhas also shavn that self-assemblycan be
viewed as a form of computation,when we usethe AP
frameawork to perform sorting. Sorting requiresonly one
small pieceof global information— eachparticle mustbe
ableto sensdts global orientation. Sortingturnedout to
bethekey to building hexagonalkandsquardatticesthatare
globally perfect,which broughtusbackfull circle.

Others have examined physical simulations of self-
assembly Schwartz et al. [10] hasinvestigatedhe self-
assemblyof viral capsidgn a 3D solution,usingakinetics
modelto simulatethe binding of proteins.Winfree[12] has
investigatedthe self-assemblyof DNA double-crosseer



moleculeson a 2D lattice, usinga thermodynamiandki-
netic modelto describethe binding of the molecules. In-
terestingly Winfree alsoshaws that self-assemblypf DNA
is a form of computationandoutlinesa simplealgorithm
thatusesself-assemblyo solve HamiltonianCircuit prob-
lems. One of the computationaktepsis a sort, similar to
thatdescribedn this paper

Both Schvartzetal. andWinfree arerestrictecto using
plausiblemodelsof naturalphysics,sincethey areinves-
tigating the self-assemblyof small natural particles. AP,
however, is notboundby thisrestriction.Sinceagentshave
their own sensorsandeffectors,they canmake useof any
AP forcethatthey canperceve andrespondo.

AP is alsocloselyrelatedto the work of Carlsonet al.
[4], which investigatesechniquesfor controlling minia-
ture agentssuch as micro-electromechanicaigentsand
nanobots.Their work reliesheavily on the useof a global
controllerthat canimposean external potentialfield that
agentscan sense. Sincewe rely primarily on local force
interactionsthework by Carlsonetal. is complementary

AP bearssomesimilarity to work in robotics,suchas
“potentialfield” and“behavior-based”approachesPoten-
tial field (PF)approachefb, 7] areusedfor robotnavigation
andobstacleavoidance.ln a mannersimilarto AP, PFap-
proachesnodela goalpositionasanattractive force,while
obstaclesare modeledwith repulsve forces. PF computes
force vectorsby taking the gradientof an entire potential
field. In AP, however, eachparticle directly computeghe
forcevectorthatappliesto its currentposition— the poten-
tial field is never computed. AP thus haslower computa-
tionaloverhead.

Behavior-basedapproachegsuchas motor schemaap-
proaches[2] and other ethological behaior-based ap-
proache$3, 8]), derivevectorinformationin afashionsimi-
larto AP. Furthermoreparticularbehaiors suchas“aggre-
gation”and“dispersion”have somesimilarity to the attrac-
tive and repulsve forcesin AP. However, behaior-based
approacheslo not make useof potentialfields andforces.
Rather they dealdirectly with velocity vectors. Although
this distinctionappearsubtle,we believe thatit is impor-
tantfor two reasons.First, AP can mimic naturalphysics
phenomenanoreeasily sinceit dealsdirectly with forces
(e.g.,we arenot aware of ary behaior-basedapproaches
that shaw clusteringor phasetransition behaior). Sec-
ondly, AP hasthe potentialof beinganalyzablewith con-
ventionalphysicstechniques.ln summary AP potentially
placesthe behaior-basedapproachesn a firmer physics
foundationyet avoidscomputingentirepotentialfields.

The term “artificial physics” hasbeenusedin another
contet, namely in philosophicaldiscussionsoncerning
theartificial reality necessaryo constructartificial life [9].
We usethetermmoregenerallyto referto ary quasi-natural
physicsmodelthatwe build to solve ary particulartask.

8. Discussion

Oneimportantconsequencef theseresultsis the deep
connectionbetweendistributed control and natural dis-
tributedcomputationgspeciallyif thatcontrolis performed
usingcontrollaws basedon AP laws. This obserationhas
two ramifications.First, control systemsasedon AP laws
are likely to display behaior similar to natural systems.
Thiswasdemonstrateah this papetby illustratinga“phase
transition”in theeffectthatG hason clustering.Onecould
alsoeasilyimaginethatsuchcontrolsystemswill obey var-
ious conseration laws, aswith natural physical systems.
Thebottomline is thatsystemdbasedn AP arelik ely to ex-
hibit the known characteristicef naturalphysicalsystems,
whichwe canuseto ouradwantage.

The secondramificationis thatit is very likely thatthe
behaior of systemsontrolledby artificial physicswill be
amenableo fairly standardanalysistools alreadyusedby
physicists.Giventhedifficulty in analyzingcomplex adap-
tive systemsinary have alreadytakentheapproactof using
techniqued$rom physics(e.qg.,statisticalmechanics)These
techniquesiremorelikely to be appropriatef the systems
to whichthey areappliedaresimilarto the naturalphysical
world. Futurework will exploretheseramifications.
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